
ZUSCHRIFTEN

Angew. Chem. 1999, 111, Nr. 23 � WILEY-VCH Verlag GmbH, D-69451 Weinheim, 1999 0044-8249/99/11123-3741 $ 17.50+.50/0 3741

Das erste cyclodiastereromere [3]Rotaxan**
Roland Schmieder, Gosia Hübner, Christian Seel und
Fritz Vögtle*

Cycloenantiomerie in mechanisch verknüpften Molekülen
wurde erstmals von Frisch und Wassermann 1961 vorherge-
sagt.[1] Die ersten Synthesen entsprechender Catenane und
molekularer Knoten konnten fast frei Jahrzehnte später von
Sauvage et al. realisiert werden.[2, 3] Bereits 1971 schlug Schill

stereoisomere [2]Rotaxane vor,[4] deren chirale Information
auf eine gerichtete Segmentsequenz sowohl im Makrocyclus
als auch in der Achse zurückzuführen ist. Achse und Reif sind
dabei selbst nicht chiral, ergeben aber bei mechanischer
Verknüfung zum Rotaxan Cycloenantiomere.

In den letzten zehn Jahren wurden einige chirale [2]Rota-
xane synthetisiert, deren Stereoisomerie auf zentraler Chira-
lität beruht.[5, 6] 1997 hatten wir selbst die ersten cycloenan-
tiomeren [2]Rotaxane und [1]Rotaxane sowie topologisch
chirale Brezelane hergestellt, die mittels chiraler HPLC in
ihre Enantiomere getrennt und chiroptisch charakterisiert
wurden.[6e] In den letzten Jahren konnten einige achirale
[3]Rotaxane synthetisiert werden.[7] Stereoisomere [3]Rota-
xane hingegen sind unseres Wissens bislang nicht bekannt.

Uns ist es jetzt erstmals gelungen, ein chirales [3]Rotaxan
herzustellen, das aus zwei achiralen Reifen besteht, die auf
eine nicht gerichtete, achirale Achse aufgefädelt wurden und
nur mechanisch an diese gebunden sind. In Analogie zur
kovalent verknüpften Weinsäure erhielten wir eine cyclodia-
stereomere Verbindung.[8] Unter Ausnutzung der jüngst von
uns beschriebenen effizienten Trapping-Synthese (chemisches
Auffädeln) von Rotaxanen mit Diether-Achsen[9] haben wir
das Dibromid 2 mit dem Stopper 3 in Gegenwart des Reifs 4
umgesetzt und dabei neben Spuren der freien Achse und des
entsprechenden [2]Rotaxans (10 %) das [3]Rotaxan 1 in 29 %
Gesamtausbeute erhalten (Schema 1).[10]

Schema 1. Synthese des cyclodiastereomeren [3]Rotaxans 1: das Enantio-
merenpaar 1b, 1 c und die meso-Form 1a.

Befindet sich nur ein einziger achiraler Reif auf einer
symmetrischen Achse, so resultiert lediglich ein [2]Rotaxan
ohne Stereoisomerie. Rotaxane des Typs 1 mit zwei Reifen,
deren gleiche Atomsequenzen im oder gegen den Uhrzeiger-
sinn angeordnet sein können, sollten in einer meso-Form (1 a)
und einem Enantiomerenpaar (1 b, 1 c) auftreten. Die Orien-
tierung der Makrocyclen auf der Achse beruht auf der
unterschiedlichen Abfolge der drei Amidgruppen und der
Sulfonamidgruppe, wobei die Reifen 4 die gleiche oder
unterschiedliche Orientierung aufweisen. Bei gleicher Orien-
tierung erhält man die meso-Form 1 a, bei entgegengesetzter
die Enantiomere 1 b und 1 c.
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Die hohe Flexibilität der Molekülkonformation ± im Sinne
der ausgedehnten Translations- und Rotationsbewegung der
Makrocyclen auf der Achse ± warf die Fragen auf, ob die
Stereoisomere im präparativen Maûstab voneinander ge-
trennt werden können und ob sich die chiroptischen Eigen-
schaften signifikant unterscheiden. Die bisherigen Ergebnisse
der von uns getrennten chiralen [2]- und [1]Rotaxane und
Catenane[6b] gaben Anlaû zur Hoffnung. Tatsächlich konnten
durch HPLC mit dem chiralen Säulenmaterial Chiralpak AD
die Isomeren erfolgreich getrennt werden (Abbildung 1).[11, 12]

Unter Basislinientrennung wurde zunächst das (�)-Enantio-
mer eluiert. Daraufhin folgte das (ÿ)-Enantiomer, das jedoch
nur eine unwesentlich kürzere Retentionszeit als die meso-
Form 1 a aufweist (Abbildung 1). Während der Separations-

Abbildung 1. Chromatogramm der Enantiomerentrennung. Retentions-
zeiten: 10.5 min ((�)-Enantiomer), 21.5 min ((ÿ)-Enantiomer), 23.5 min
(meso-Form).[12]

faktor a(ÿ),(�) der Enantiomere bei 2.57 liegt und somit eine
vollständige Trennung möglich ist, beträgt a(ÿ),meso lediglich
1.11. Wir konnten jedoch eine hinreichende Trennung von 1 a
und dem (ÿ)-Enantiomer erreichen.

Das reine Enantiomer 1 b und das angereicherte Enantio-
mer 1 c (ca. 90 %) zeigen tatsächlich ausgeprägte Circular-
dichroismen (Abbildung 2) sowie Drehwerte, die in Tabelle 1
aufgeführt sind.[13] In Analogie zu Weinsäure weist die meso-
Form 1 a keine optische Aktivität auf.

Abbildung 2. Circulardichroismusspektren der Cycloenantiomere 1b und
1c in Trifluorethanol; c[(�)-1]� 1.24� 10ÿ5m ; c[(ÿ)-1]� 3.22� 10ÿ5m.

Das Bemerkenswerte dieses [3]Rotaxans liegt in der
mechanischen Verknüpfung seiner achiralen Komponenten
Achse und Reifen, die zu cyclodiastereomeren Molekülen
führt. Die Stereoisomere bilden sich im statistischen Verhält-
nis (meso-1:(�)-1:(ÿ)-1� 2:1:1) und lassen sich chromatogra-
phisch gut trennen. Damit sollte in naher Zukunft die
Synthese und Enantiomerentrennung eines [3]Rotaxans mit
zwei unterschiedlichen Reifen, einem nichtorientierten und
einem orientierten, sowie höherer [n]Rotaxane möglich
sein, die ebenfalls Cyclostereoisomerie aufweisen.[14] Chirale
Rotaxane dürften damit auch in Zukunft ein dankbares
Forschungsobjekt sein.[15]
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Tabelle 1. Drehwerte [a]26 (CHCl3) der Cycloenantiomere 1 b und 1c bei
verschiedenen Wellenlängen; c[(�)-1]� 5.82� 10ÿ4m, c[(ÿ)-1]� 5.03�
10ÿ4m.

l [nm] a(1b) [8][a] a(1c) [8][a]

577 � 8 ÿ 8
546 � 5 ÿ 7
435 � 10 ÿ 11
405 � 16 ÿ 14
365 � 26 ÿ 24

[a]Der Fehler (�18) ergibt sich aus der Genauigkeit des Polarimeters.
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Korupensamin A: ein Ansatz zur
stereospezifischen, intermolekularen
Biarylkupplung ± auf dem Weg zu den
Michellaminen**
Bruce H. Lipshutz* und John M. Keith

Die Michellamine bilden eine recht ungewöhnliche Gruppe
hochaktiver, antiviraler Naturstoffe, von denen Michell-
amin B derzeit die gröûte Aufmerksamkeit als hochwirk-
sames anti-HIV-1- und -2-Agens erhält.[1] Die Fragmente
dieses Alkaloids, die Korupensamine A und B, sind hinsicht-
lich ihrer axialen Chiralität diastereomer zueinander
(Schema 1).[2] Alle Versuche einer direkten, weitgehend
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Schema 1. Rückführung von Michellamin B auf die Fragmente Koru-
pensamin A und B.

stereokontrollierten Biarylkupplung zwischen den Naphthyl-
und Tetrahydroisochinolin-Einheiten waren bislang nur von
mäûigem Erfolg gekrönt,[3] was eine Reihe von Arbeits-
gruppen zur Entwicklung von raffinierten, aber indirekten
Alternativen ermutigt hat.[4] Wir beschreiben hier eine neue
Lösung für dieses Problem, welche einen ausschlieûlichen
Zugang zur Korupensamin-A-Serie durch eine Pd0-vermittel-
te intermolekulare Biaryl-Kreuzkupplung ermöglicht.

Die Strategien, nach denen unsere Route entwickelt wurde
(Schema 2), basieren auf der Anwesenheit eines Hydroxy-
¹Henkelsª in jeder der beiden Komponenten. Von diesen
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